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C H A P T E R 1

Looking at People

Understanding what people are doing by analysing video is one of the great
unsolved problems of computer vision. A fair solution opens tremendous application
possibilities, including: improved surveillance systems; a better understanding of
what people do in public; better architectural design; and better human computer
interfaces. The problem is difficult, because each of the component problems seem
to be difficult, and because we’re not yet sure how the components fit together. De-
tecting people and determining their configuration in an image is hard, most likely
because of appearance variations (section ??). Human motion appears to have a
compositional property that complicates building representations (we review some
background material from the animation community in section ??). Tracking peo-
ple in video remains difficult, probably because motion models don’t help resolve
appearance variations as much as one could hope for (section ??). The relations
between a 2D track and a 3D representation of the body are clear in outline, but
important details remain obscure (section ??); however, multicamera reconstruc-
tion is now quite well understood (section ??). And finally, it isn’t clear how one
should represent activity. Simple discriminative methods work very well on sim-
ple problems (for example, telling “running” from “walking”), but more complex
distinctions about composite activities (“watching tv while preparing food”, say)
remain difficult to draw (section ??).

1.1 DETECTING AND PARSING PEOPLE

Notes: Big issue here is what model and what features to use: should we encode
kinematic knowledge implicitly or explicitly? and should we make features clothing,
lighting invariant, or estimate appearance

Notes: (1) Why it is important. ( 2) What makes it difficult.( 3) What cues
could we use. (4) Strategies: Clothing independent implicit kinematics. (5) Strate-
gies: Clothing independent explicit kinematics (6) Strategies: Clothing dependent
explicit kinematics. (7) Notes: motion can help.

A human detector needs to tell whether an image window contains a person
at about the scale of that window or not. Human detection has several valuable
applications. Pedestrian detection is worth doing well, because cars that can au-
tomatically detect and avoid pedestrians might save many lives (1997 figures give
approximately half-a-million pedestrians killed by cars each year). Detecting hu-
mans is an important component in many surveillance applications because there
are many places where detecting a human should immediately lead to an alarm
(on an active runway, for example). People are the main subject of news pictures,
home photo collections, broadcast video, commercial movies and home videos, so
a human detector would be useful for building search and collection management
tools for multimedia collections.

A human parser must produce some report of the configuration of the body
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Section 1.1 Detecting and Parsing People 3

in an image window. A human parse offers cues to what the person is doing,
by reporting where the arms and legs and so on are. Applications could include
building a user interface that can respond to someone’s gestures or building a
medical support system that can tell, by watching video, whether a physically
frail person is safe at home, or has sustained an injury and needs care. Tracking
people is a particularly useful technology (we’ll discuss its applications below), and
the currently most reliable technologies for human tracking involve a combination
of detection and parsing. Detection could occur before parsing, in which case one
would know that a window contains a person and must then determine how the body
is laid out in that video. Alternatively, the two can be integrated, and detection
would occur by searching a window for bits of the body and evaluating whether
their layout suggests a person is present. It is still not certain which view is more
useful.

Both detection and parsing are difficult problems. Many effects cause people
to look different from window to window. There is a range of shapes and sizes
of body. Changes in body configuration and in viewpoint can produce dramatic
changes in appearance. The appearance of clothing can vary widely. As of writing,
no published method can find clothed people wearing unknown clothing in arbitrary
configurations in complex scenes reliably. The main cues to help overcome these
difficulties are the fairly strong constraints on the layout of the body, and the
relatively restricted appearance of a range of human body parts and configurations.

There are numerous possible kinematic cues. Many important problems in-
volve walking or standing people, and these activities involve a relatively small
range of body configurations, which are quite characteristic. Standing people have
a “lollipop” (wide torso, narrow legs) appearance. Walking people tend to be
in either this configuration, or in a “scissors” configuration with their legs apart.
Some curves in the outline of the body, particularly the curve around the head and
shoulders, can be quite distinctive and are fairly stable across viewing directions.
This suggests using a model based on implicit kinematics encoded by a classi-
fier; because the range of variation is relatively small and orderly, the number of
training examples required to represent it is tractable. Building an implicit kine-
matic model that would accept every view of every configuration would involve a
major engineering effort. Among other difficulties, the relative frequency of items
within the training data would most likely misrepresent the relative frequency of
configurations in real life. People are made of body segments which individually
have a quite simple structure, and these segments are connected into a kinematic
structure which is quite well understood. This suggests building a model based on
explicit kinematics to represent the different configurations and views available.

A model that does not represent the layout of the body explicitly will have
difficulty comparing appearance cues across the body. But if one uses a model
that represents the layout of the body explicitly, there is a wide range of possible
appearance cues. Body segments tend to be cylindrical, and so their edges will be
roughly straight and roughly parallel. This means that clothing independent

methods, which use features that are largely unaffected by the color and texture
of clothing, can be successful. The advantage of a such a method is that we don’t
need to estimate the appearance of the clothing. The disadvantage is that there
are useful cues that the method doesn’t exploit. Segments on the left half of the



4 Chapter 1 Looking at People

body tend to have the same color and texture as segments on the right half of the
body. Generally, the appearance within a segment is quite coherent (meaning that
the color and texture at one place on, say, a lower arm will be quite like that at
another). Quite often, most of the background does not look like the person. These
observations mean that clothing dependent methods, which try to estimate the
appearance of the clothing and then identify the body, can be successful, too. These
methods must pay the cost of estimating the appearance, and are not obviously
superior as a result.

1.1.1 Clothing-independent Implicit Kinematic Human Detection

Pedestrians can be detected quite successfully by a moving window technique. The
main issue is building an appropriate feature to feed into a classifier. Pedestrians
wear too many different kinds of clothing, and appear in too many different con-
figurations, for just testing pixels to be successful. We expect to see some quite
distinctive edge patterns, however, from, among other sources, the “scissor” and
“lollipop” configurations of walking or standing pedestrians, and the curve around
the head and shoulders. A pure edge map will not work as a feature because
changes in illumination intensity or background will lead to contrast effects that
tend to knock out useful edge points. Instead, orientations would be a better basic
feature. The large range of spatial variations suggests using some form of histogram
to smooth, but simply histogramming orientation over a whole image window will
work poorly, too, because too many image windows will produce the same orien-
tation histogram. A better approach is to break up the window into cells, which
could overlap, and build an orientation histogram in each cell. The feature is now
a vector made by stacking cell orientation histograms (each of which is a vector).
This gives a feature that can tell whether the head and shoulders curve is at the
top of the window or at the bottom, but will not change if the head moves slightly.

One further trick is required to make a good feature. Orientation is not
affected by illumination brightness. This property has been useful, but prevents us
from treating high contrast edges specially. For example, we are counting a light
grey stripe on a slightly darker grey background in the same way as we are counting
a black stripe on a white background. By doing this, we will make the distinctive
curves on the boundary of a pedestrian count with the same weight as fine texture
detail in clothing or in the background, and so the signal will be submerged in noise.
We can recover contrast information by counting gradient orientations with weights.
Gradients will add counts proportional to their magnitude to each cell histogram
in which they appear, at the appropriate orientation. High contrast edges will
dominate the histogram. However, matching will still be affected by illumination
(if we double the light intensity, the histogram counts will all double). Correcting
illumination across the whole window will not resolve this problem, either, because
one side of the pedestrian may be shadowed and the other bright. Instead, we will
normalize illumination locally in each cell. Doing so boils down to ensuring that
each of the cell orientation histograms stacked into the feature vector is of the same
total weight. If the cells overlap, which is the usual case, then our feature will
implicitly represent several normalizations for each point.

The resulting feature is a variant of SIFT, known as a HOG feature (for
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FIGURE 1.1: Test examples that contain people but are misclassified by a reimplemen-
tation of Dalal and Triggs’ [21] pedestrian detector, from [?]. Notice that unusual
body configurations are quite common in this set (more so than in the test set).
This suggests some errors made by that method are caused because the training
set misrepresents the different configurations people can get into, as it must. Fig-
ure from “Configuration estimates improve pedestrian finding”, D. Tran and D.A.
Forsyth, NIPS, 2007Shown in draft in the fervent hope of receiving permission for
final version

histogram of oriented gradients), due to Dalal and Triggs [21]. This feature, coupled
with a linear SVM, yields a well-behaved pedestrian detector. For example, Dalal
and Triggs show this method produces no errors on the 709 image MIT dataset
of [74]; they describe an expanded dataset of 1805 images.

Notes: Figure from Deva + Pedro’s paper

1.1.2 Clothing-independent Explicit Kinematic Human Detection

Notes: Work in Deva+Pedro here, too

Pedestrian finders seem to fail preferentially on windows with unusual body
configurations (Figure ??), and this (if it is the case — it’s still difficult to be
sure) it is a major problem. We cannot run someone over because they get on
a bicycle. An explicit kinematic model could help, by allowing us to encode all
possible kinematic configurations rather than just all those observed in training
data. Generally, we would exploit an explicit kinematic model by finding parts and
then reasoning about their layout. The core idea is very old (early examples of
this line of reasoning include [3, 4, 8, 42, 58, 71]) but the details are hard to get
right and important novel formulations are a regular feature of the current research
literature.

Most methods of this type represent a view of a person as a set of 2D body
segments linked by rotary (and perhaps translational) joints, placed at the body
joints. The body segments are usually torso, head, upper and lower arms and legs,
and are usually represented by image rectangles of fixed size. Section ?? describes
the pictorial structure model, which uses a spatial layout model to parse a person
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given an appearance model of that person. This model can be extended to detect
people with unknown clothing in two steps. To produce a detector, we could either
look at the cost of the best parse under the pictorial structure model, or apply a
discriminative detector to the image domains identified by the best parse. To deal
with the unknown appearance of the parts, we can build discriminative part finders.

The simplest way to build part finders is to build a labelled dataset containing
image windows aligned to body segments and background windows, then train
classifiers to detect these parts. The original approach uses filter outputs [], but
one might use HOG features instead. We can then regard the strength of the part
detector responses as a segment cost function (compare section ??), and apply
a pictorial structure model as before. Because some parts might be missing or
occluded, it makes sense to build a model around a mixture of trees, rather than a
single tree (again, compare section ??). One problem with this approach is that the
tree model and the body segment model are trained separately. This means we have
missed the opportunity to bias the errors that the detectors make in a direction
that the tree model is capable of fixing. It is possible to train both detectors
and tree model simultaneously, using a procedure known as structure learning.
Doing so requires a dataset of people where the full layout of the body has been
labelled. To train the method, one chooses the parameters of the tree model and
of the detectors so that, on the training data, the combination of tree model and
detector selects a configuration close to that labelled. This means that, at each
step of learning, we must run a pictorial structure model on every training data
item. The technical details are beyond the scope of this chapter, but the procedure
improves the performance of human detectors somewhat [?].

Body segments seem to be the “natural” parts from which to build a kine-
matic model, but the models that result are not entirely satisfactory. Parses tend
to be poor, most likely because the kinematic model isn’t particularly accurate and
neither are the part detectors. One source of inaccuracy is the common assumption
that the segments are of fixed size. If we are building a detector, the model’s com-
plexity might be unnecessary and might impede good performance. An important
alternative, due to Felzenszwalb et al. [], is to allow the model to discover parts,
which would be image patches that tend to: (a) be associated with the object;(b)
be of coherent appearance and (c) turn up in similar locations relative to the object
and one another. Doing this requires learning both part appearance models and
part kinematics within the context of a small family of explicit kinematic models.

We can build a model at two scales. The first is the root scale, and some
pattern should be detected at that scale to get a good detection. The root scale
pattern is like a conventional window based detector. The second scale is the
part scale, and we expect that several window detectors should respond strongly
to smaller windows, close to particular locations relative to the root scale. What
is important here is that these part detectors may have nothing to do with, say,
arms or legs. Instead, they represent detail patterns that tend to appear close to
particular locations. The model scores a window and a set of part locations by
adding a score for the root scale, a score for how well each part matches the part
scale window at its location, and a score for the locations of the part matches. The
best value over all locations then gives the overall score for a window.

If we knew where each part detector should respond for every positive train-
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ing image, learning such a model would be straightforward: we have positive and
negative example image windows for the root scale and each part, and so can train
those parts of the model using an SVM; and we have the location of each part, so
we can use (for example) a maximum likelihood approach to build a location score.
This suggests training by iteratively reestimating parts given a location model, then
locations given a part model. As of time of writing, this class of model had the
best scores in difficult human detection challenge problems [].

Notes: Felzenszwalb figure

1.1.3 Clothing-dependent Explicit Kinematic Human Detection

Appearance independent body part finders can work poorly, because the only cue
available is the tendency of image edges around a part to look somewhat like the
edges of a cylinder. Ramanan points out that we can deal with this is by estimating
the appearance of the person []. Assume we know that a person is present in
the window, and we have built a (necessarily somewhat unreliable) appearance
independent body segment finder. We could use a pictorial structure model together
with this body segment finder to obtain an estimate of the person’s configuration.
The result may not be right, but is unlikely to be completely wrong. Better, we
could generate multiple estimates of configuration, using the procedure for sampling
described in section ??. These estimates appear with frequency proportional to the
posterior. We can build a map of the posterior a pixel is, for example, a head pixel
by rendering the head segment for each of these estimates of configuration and then
summing the images. In turn, this means we have a set of weighted head/non-head
pixels, which can be used to build a discriminative appearance model for the head.
From this, we can build a map of the posterior that a pixel belongs to a segment,
which is called a parse; such maps are conveniently encoded as an image with
higher intensity for larger posterior values, and a different color for each segment.
Some smoothing will help manage possible errors in the configuration estimate;
for example, we might require that the appearance model has a mirror symmetry
property. We now use a pictorial structure method with this appearance model
to reestimate the configuration (Figure ??). We then reestimate the appearance
model, then the configuration, and so on. Again, the technical details of this
procedure are beyond the scope of this chapter, but the procedure we have described
can produce simultaneous estimates of parses and appearance models for complex
images.

Reestimating appearance and configuration can be fooled if the human figure
covers a relatively small percentage of the image area. In this case, there is the
prospect that the initial estimate of configuration is wholly wrong, and there is little
chance that reestimation will help here. This suggests that we should use other
information to reduce the search domain, and doing so has been shown to produce
very good upper body parses automatically (Figure ??). The first thing to do is
find an approximate search domain. We detect the figure’s upper body, and then
use the scale and orientation information for that detect to derive a box from the
constrained length of the arms and from the fact that the torso is below the upper
body. Everything outside this box is certainly not on the person. Because the torso
is below the upper body and the detector is oriented, some pixels inside the box are
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FIGURE 1.2: Appearance independent body segment finders tend not to be particu-
larly effective, because they can use relatively little image evidence. This suggests it
is a good idea to estimate segment appearance models. Ramanan iterates between
estimating configuration using an appearance model, and estimating appearance us-
ing the current set of configurations [?]. In the first step, one uses edges to produce
an appearance independent segment finder, then produces multiple sample configu-
rations from a pictorial structure model. Overlaying these configurations yields a
posterior that a pixel belongs to a segment — a parse — which can be used to train a
discriminative appearance model for the segment. The parses on the left come from
an edge model, and in the center, the pixels predicted to belong to each segment
by the discriminative appearance model. Now we generate new configurations using
this appearance model (labelled iter 2, on the right), and reiterate (iter 3, and so
on, on the right). Notice that in a few iterations we have a crisp parse — we know
which pixels belong to arm, leg, and so on. Figure from “Learning to parse images
of articulated bodies,” D. Ramanan, NIPS 2006Shown in draft in the fervent hope
of receiving permission for final version

definitely on the person. We can now use an interactive segmentation method like
Grabcut [] to segment an estimate of the person from the background. Grabcut uses
a color model for foreground and background, built from various possible sources,
to segment out a foreground. In this case, the background color model can be
estimated from pixels outside the box, and some inside the box; the foreground color
model can be estimated from some of the pixels inside the box; and we can constrain
some pixels to be foreground in the final segmentation. Because the segmentation
might not be precise, we can dilate it to get a somewhat larger domain. We now have
a relatively small search domain and a very rough initial estimate of configuration
to start the iterative reestimation process. Further constraints are available if we
are working with a motion sequence; these are explored in section ??.

1.1.4 Motion Features for Human Detection

Features for building human detectors are usually derived from arguments about
kinematic behaviour or about appearance. Motion is another source of features, at
least if one is working with video. Walking people in particular tend to move in
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FIGURE 1.3: The human parser of figure 1.2 is a search of all spatial layouts in the
image to find one that is consistent with the constraints we know on appearance.
Ferrari et al. show that reducing the search space improves the results. First, one
finds upper bodies, and builds a box around those detections using constraints on
the body size (A). Outside this box is background, and some pixels inside this box
are, too. In B, body constraints mean that pixels labelled Fc and F are very likely
foreground, U are unknown, and B are very likely background. One then builds color
models for foreground and background using this information, then use Grabcut to
segment, requiring that Fc pixels be foreground, to get C. The result is a much
reduced search domain for the human parser, which starts using an edge map D,
to get an initial parse E, and, after iterating, produces F. Figure from “Progressive
search space reduction for human pose estimation,” V. Ferrari, M. Maŕın-Jiménez
and A. Zisserman, CVPR 2008Shown in draft in the fervent hope of receiving
permission for final version

quite restricted ways, and, as Figure ?? shows, their movements leave distinctive
structures in an XYT image (a stack of frames, registered as to camera motion,
originally due to Baker [40]). These structures could be used to identify motions [68]
or recover some gait parameters [67].

There are generally two strategies to exploit these characteristic spatio-temporal
patterns to build human detectors. One could compute spatial features for each of
a set of frames, stack these into a feature vector, and present the feature vector to
a classifier. Doing so encodes dynamics implicitly, and can produce a significant
improvement in detection rate for a given false positive rate [75]. Viola et al. use
explicit motion features — obtained by computing spatial averages of differences
between a frame and a previous frame, possibly shifted spatially — and obtain
dramatic improvements in detection rates over static features ([104, 105]; see also
the explicit use of spatial features in [20, 72, 73], which prunes detect hypotheses by
looking for walking cues). This work uses a cascade architecture, as in section ??.
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FIGURE 1.4: Attribution: figure 2 of polana nelson recognizing activities , figure 2
of Niyogi Adelson recognizing gait On the left, an XYT image of a human walker.
The axes are as shown; the stack has been sliced at values of Y, to show the pattern
that appears in the cross section. Notice that, at the torso there is a straight line
(whose slope gives an estimate of velocity) and at the lower legs there is a character-
istic “braid” pattern, first pointed out by Niyogi and Adelson [68]. On the right, a
series of estimates of the spatial distribution of motion energy (larger white blocks
are more energy) for different frames of a walk (top) and a run (bottom); the
frame is rectified to the human figure by translation, and one image frame from
each sequence is shown. Notice that, as Polana and Nelson point out, this spa-
tial distribution is quite characteristic [77]. Figure from “Recognizing Activities”,
Polana and Nelson, Proc. Int. Conf. Pattern Recognition, 1994, c© 1994 IEEE.
Figure from “Analyzing Gait with Spatiotemporal Surfaces”, Niyogi and Adelson,
Proc. IEEE Workshop on Nonrigid and Articulated Motion, 1994, c© 1994 IEEE.

1.2 HUMAN MOTION AND COMPOSITION

Notes: Main points: motion capture data is useful, easy to get and important; a
primitive representation is available and seems about right but details are confused;
composition is a big deal, because it affects how we think about motion

1.2.1 Motion Capture Data

Motion capture refers to special arrangements made to measure the configuration
of a human body with (relatively) non-invasive processes. Early systems involved
instrumented exoskeletons (the method is now usually seen as too invasive to be
useful except in special cases) or magnetic transducers in a calibrated magnetic field
(the method is now usually seen as unreliable in large spaces). More recent systems
involve optical markers. One can use either passive markers (for example, make
people wear tight-fitting black clothing with small white spots on them) or active

markers (for example, flashing infrared lights attached to the body). A collec-
tion of cameras views some open space within which people wearing markers move
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around. The 3D configuration of the markers is reconstructed for each individual;
this is then cleaned up (to remove bad matches, etc.; see below) and mapped to an
appropriate skeleton. Motion capture is a complex and sophisticated technology;
typical modern motion capture setups require a substantial quantity of skilled input
to produce data.

Typical workflow involves capturing 3D point positions for markers, discount-
ing or possibly correcting any errors in correspondence by hand, then using software
to link markers across time. There are usually errors, which are again discounted
or corrected by hand. Motions are almost always captured to animate particular,
known models. This means that one must map the representation of motion from
the 3D position of markers to the configuration space of the model, which is typicaly
abstracted as a skeleton — a kinematic tree of joints of known properties and mod-
elled as points separated by segments of fixed, known lengths, that approximates the
kinematics of the human body. Different approximations have different properties
— the details are a matter of folklore — and one chooses based on the needs of the
application and the number of degrees of freedom of the skeleton. Skeletonization is
not innocent, and it is usual to use artists to clean up skeletonized data, essentially
by adjusting it until it looks good. Data represented using one skeleton cannot
necessarily be transferred to a different skeleton reliably. Reviews of available
techniques in motion capture appear in, for example [10, 38, 56, 59, 61, 91].

For the moment, fix a skeleton. The configuration of the skeleton can be
specified either in terms of its joint angles, or in terms of the position in 3D of
the segment endpoints (joint positions). Not every set of points in 3D is a legal
set of segment endpoints (the segments are of fixed lengths), so sets of points that
are a legal set of segment endpoints must meet some skeletal constraints. The
set of all legal configurations of the body is termed the configuration space; the
joint angles are an explicit parametrization of this space, and sets of points in 3D
taken with constraints can be seen as an implicit representation.

Sometimes one wants the motion capture data to drive a rendered figure. For
example, when the actor moves an arm, the virtual character should do the same.
The virtual character is represented as a pool of textured polygons, and one must
determine how the vertices of these polygons change when the arm is lifted. The
process of building a mapping from configuration — always represented as joint
angles for this purpose — to polygon vertices is referred to as skinning.

An important practical problem is footskate, where the feet of a rendered
motion appear to slide on the ground plane. In the vast majority of actual motions,
the feet of the actor stay fixed when they are in contact with the floor (there are
exceptions — skating, various sliding movements). This property is quite sensitive
to measurement problems, which tend to result in reconstructions where some point
quite close to, but not on, the bottom of the foot is stationary with respect to the
ground. The result is that the reconstructed foot appears to slide on the ground
(and sometimes penetrates it). The effect can be both noticeable and offensive
visually. Footskate can be the result of: poorly placed markers; markers slipping;
errors in correspondence across space or time; reconstruction errors; or attempts to
edit, clean up or modify the motion. Part of the difficulty is that the requirement
that the base of the foot lie on the ground results in complex and delicate constraints
on the structure of the motion signal at many joints. These constraints appear to
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have the property that quite small, quite local changes in the signal violate them.
It is likely that these properties are shared by other kinds of contact constraint (for
example, moving with a hand on the wall), but the issue has not arisen that much
in practice to date.

1.2.2 Composition, Motion Primitives and Motion Graphs

While human motion is complex, it does seem to be a composite of smaller pieces
of motion. For example, when people walk they repeat roughly the same motion
again and again. Many everyday motions are stereotyped. Think of reaching for a
kitchen knife, chopping onions, climbing stairs, dressing, and so on. There is a fair
body of practical evidence that motions are composites (or at least, that it is useful
to pretend that they are). The simplest mechanism is temporal composition,
where motions are strung together in time to produce a new, more complex motion.
For example, a subject might walk into a room, halt, look around, walk to a chair
and then sit down.

The use of motion capture data by, for example, the computer game industry
reflects this belief. Typically, motions are created for a game by writing and cap-
turing a script of motions, using a set of “complete” motions that start and end
at one of a few rest positions. The motions can be thought of as building blocks
which can be joined if one ends and the next starts at the same rest position. The
choice of which block is joined to the end of the last block can be made by a game
engine. Motions captured for a particular title are then usually discarded as re-use
presents both economic and legal difficulties.

These blocks of motion can be thought of as motion primitives. There
would be important advantages to knowing a large dictionary of motion primitives
that can encode many motions well. Such a dictionary could be used to compress
motion data. It could be used to produce long time-scale statistics about how
motions are constructed, by representing motions with the dictionary and then
looking for important co-occurrences. These seem to be non-trivial. For example,
we know that people can walk backward and sometimes do; but if you want to
move to a point a long way behind you, you will turn around and walk forwards
toward the point. As another example, it is quite uncommon to reach in a direction
you haven’t looked in recently. Long timescale activities — for example, visiting
an ATM, or making dinner — can be seen as a sequence of motion primitives
assembled according to a model. Building a dictionary of motion primitives seems
to require iterative re-estimation. One uses an existing dictionary (equivalently,
set of clustered motions) to segment a set of motion sequences, and then uses that
segmentation to re-estimate the dictionary.

Estimating motion primitives well remains difficult. A more successful prac-
tical representation involves a more fluid encoding of possible transitions between
motions, usually known as a motion graph. The details of how motion graphs are
built and represented vary from author to author, but the simplest model regards
every frame of motion as a node and inserts a directed edge from a frame to any
frame that could succeed it. For example, a stack of observed motions is a motion
graph, because there is a directed edge from each frame in a motion to the next
frame in that motion. A more useful motion graph can be obtained by adding
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computed edges, which identify transitions that could have been observed, but
are not in the current dataset.

Computed edges can be inserted by matching. Write Ai for the i’th frame in a
sequence A. Then if two frames are sufficiently similar, their futures (or pasts) could
be interchanged. This means that if if Ai and Bj are similar, that means that four
motion sequences are acceptable: ...Ai−1AiAi+1..., ...Bi−1BiBi+1..., ...Ai−1AiBj+1...,
and ...Bj−1BjAi+1.... Frames can be matched using point locations and velocities.
Once the graph is built, there are numerous methods for searching it to produce
a motion that meets a demand, typically specified by a set of constraints. The
underlying assumption is that any path in a motion graph will be a good motion.

For our purposes, what is important about motion graphs is that they work
fairly well. Experience has shown that any path in a motion graph that does not
involve too many computed edges does look very much like a human motion. These
paths often have extremely high quality, though if there are many computed edges
there is a tendency for the motion to pop or jitter (which is evidence that methods
for identifying computed edges could be improved). This is evidence that human
motion behaves as if it was produced by temporal composition.

Motions can be constructed by using different building blocks for different
parts of the body. For example, it is possible to walk while scratching your head
with one hand, and the arm motion involved in scratching your head with your left
hand is basically a reflected version of the arm motion involved in scratching your
head with your right hand. We refer to this idea as composition across the body.
Such composite motions can be produced from motion capture data by cutting a
limb off one sequence and attaching it to another sequence. Many such transplants
are successful, but some apparently innocuous transplants generate motions that
are extremely bad. It is difficult to be precise about the source of difficulty, but at
least one kind of problem appears to result from passive reactions. For example,
assume the actor punches his left arm in the air very hard; then there is typically
a small transient wiggle in the right arm. If one transplants the right arm to
another sequence where there is no such punch, the resulting sequence often looks
very bad, with the right arm apparently the culprit. One might speculate that
humans can identify movements that both don’t look like as though they have been
commanded by a normal central nervous system and can’t be explained as a passive
phenomenon.

1.3 TRACKING PEOPLE

Notes: (1) Why it is important. ( 2) What makes it difficult.( 3) What cues could
we use. (3.5) what representation should we adopt (4) Strategies: Clothing indepen-
dent implicit kinematics. (5) Strategies: Clothing independent explicit kinematics
(6) Strategies: Clothing dependent explicit kinematics.

Tracking people in video is an important practical problem. If we could tell
how people behave inside and outside buildings, it might be possible to design
more effective buildings. If we could reliably report the location of arms, legs, torso
and head in video sequences, we could build much improved game interfaces and
surveillance systems. Our observations on why detecting people is difficult apply
to tracking people, too, as do our observations on what cues are available to help
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detect people.

Detection systems may have to deal with isolated images, but tracking sys-
tems never do. This means that tracking systems can exploit motion as a cue.
Motion is almost certainly a useful cue for detecting people or segments. Mo-
tion can also contribute by predicting plausible locations for detections in the next
frame, through some form of filtering procedure. This cue is currently — and, we
thing, rightly — out of vogue, because people can produce large accelerations and
move quite fast. This means that for 30Hz video, the configuration of the body
in frame i doesn’t constrain the configuration of the body in frame i + 1 all that
strongly. While body configurations change quickly from frame to frame, appear-
ance changes very slowly, particularly if one is careful about illumination. This is
because people tend not to change clothes from frame to frame. Generally, building
a good person tracker seems to involve paying close attention to image appearance
and data association, rather than to dynamical models or probabilistic inference.
As a result, recent methods strongly emphasize various tracking by detection ideas,
and the main kinds of distinction between methods are the same as those for de-
tection. Because we have multiple frames over which to build appearance models,
and because it can be very valuable to tell people apart by the differences in their
clothing, trackers with explicit kinematic models are always clothing dependent.

In tracking systems, our somewhat uncertain distinction between detection
and parsing becomes a rich range of options for representing the body when we
track. A range of levels of detail are useful. Representing a person as a single point
is sometimes useful: for example, such representations are enough to tell where and
when people gather in a public space, or during a fire drill. Alternatives include:
representing the head and torso; representing the head, torso and arms; representing
head, torso, arms and legs; and so on, down to the fingers. Tracking becomes
increasingly difficult as the number of degrees of freedom goes up, and we are not
aware of any successful attempts to track the body from torso to fingers (which
are a lot smaller than torsos, which introduces other problems). Most procedures
for tracking single point representations use the methods of chapter ?? directly,
typically combining background subtraction with some form of blob appearance
tracker. This section focuses on trackers that try to represent the body with fairly
detailed kinematic models, because such trackers use procedures specialized for
tracking people.

The state of the body could be represented in 3D or in 2D. If there are many
cameras, a 3D state representation is natural, and multi-camera tracking of people
against constrained backgrounds now works rather well. The flavour of this subject
is more like reconstruction than like detection or recognition, and it doesn’t fit very
well into general pattern of single camera tracking. For reference, we give a brief
review of tracking people in 3D using multiple cameras in section ??. In many
important cases — for example, an interface to a computer game — there will be
only one camera. If we require a representation of the body in three dimensions,
then we could use a 3D representation of state, perhaps joint locations in 3D, or
a set of body segments in 3D modelled as surfaces. Alternatively, we could track
the body using a 2D state representation, and then “lift” it to produce a 3D track.
Relations between the 2D figure and the 3D track are complicated, and may be
ambiguous. The heart of the question is the number of possible 3D configurations
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that could explain a single image, and this depends quite a lot on what we observe
in the image.

Generally, we favor tracking using a 2D representation, then lifting the track
to 3D and we will discuss only this strategy in any detail. This is mainly a question
of clarity. Methods for tracking using 3D state representations must deal with data
association and with lifting ambiguity simultaneously, and this leads to complexity.
In contrast, tracking in 2D is in essence a data association problem, and lifting
is in essence to do with ambiguity. Another advantage to working in 2D first,
then lifting, is that the lifting process can use image evidence on longer timescales
without having any significant effect on the complexity of the tracking algorithm.
We will return to this argument in section ??.

1.3.1 Clothing-dependent Explicit Kinematic Human Tracking

In section 1.3.1, we described methods to identify an appearance model for a person
from a single image. Generally, the strategy was to find a small but plausible
spatial domain in the image, then iterate configuration estimation and appearance
estimation in that domain. In a motion sequence, we can build a much better
appearance model by exploiting the fact that body segment appearance doesn’t
change over time. Furthermore, the sampling time of the video is relatively fast
compared to body movement, which means we know roughly which search domain
in the n+1’th frame corresponds to which in the n’th frame. This means that we can
strengthen the appearance model by using multiple frames to estimate appearance.
We can improve configuration estimates both by using the improved appearance
model, and by exploiting the fact that segments move relatively slowly. Ferarri
et al. show significant improvements in practice for upper body models estimated
using these two constraints (Figure ??).

There is an alternative method to obtain an appearance model. It turns out
that people adopt a lateral walking configuration rather often, meaning that if
we have a long enough sequence (minutes are usually enough), we will detect this
configuration somewhere. Once we have detected it, we can read off an appearance
model because we know where the arms, legs, torso and head are. The pictorial
structure model can detect lateral walking configurations without knowing the color
or texture of body segments. We set up φ to score whether there are image edges
close to the edges of the segment rectangles, and use strong angular constraints
in ψ to detect only the lateral walking configuration. The resulting detector can
be tuned to have a very low false positive rate, though it will then have a low
detect rate, too. Now we run this lateral walking detector over every frame in the
sequence. Since the detector has a low false positive rate, we know when it responds
that we have found a real person; and because we have localized their torso, arms,
legs and head, we know what these segments look like.

We can now build a discriminative appearance model for arms, legs, etc. and
use this in a new pictorial structure model to detect each instance of the person. We
take example pixels from each detected segment and from its background, and use,
say, logistic regression to build a classifier that gives a one at segment pixels and
a zero otherwise. Applying these to the images yields a set of segment maps, and
the φ for each segment scores how many ones appear inside the image rectangle on
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A

A’

B

B’ B’’

FIGURE 1.5: Human body segments do not change appearance much over time, so
that using multiple frames can yield a better appearance model and so a better parse.
A shows a frame, and A’ shows its parse, derived by Ferrari’s method (from [?],
described in section ?? and figure ??. In this case, the parse has relatively low
entropy — we have a fairly accurate model of where everything is. The frame inB
is more difficult, and a single frame method produces the parse of B’, which has
relatively high entropy. By requiring that appearance be coherent over time, and that
segments not move much from frame to frame, we can obtain the tighter parse of
B”. Figure from “Progressive search space reduction for human pose estimation,”
V. Ferrari, M. Maŕın-Jiménez and A. Zisserman, CVPR 2008Shown in draft in
the fervent hope of receiving permission for final version

the relevant segment map. We can now pass over the video again, using a pictorial
structure with weak constraints to detect instances of this person.

1.3.2 Clothing-independent Implicit Kinematic Human Tracking

Notes: There are structural constraints not respected by the local body model that
appear commonly, and we could benefit from this. There are few configurations for
many movements. If we don’t know segment appearance, then we need to work with
edges. This suggests representing individual images as exemplars. Now our state is
exemplar cross deformation. we track this with a particle filter

Some human motions — walking, jumping, dancing — are highly repetitive,
and the relatively free structure of a fully deformable model is not necessary to
track them. If we are confident that we will be dealing with such motions, then
we could benefit by using more restrictive models of spatial layout. For example,
if we are tracking only walking people in lateral views, then there are relatively
few configurations that we will see and so our estimate of layout should be better.
There is another advantage to doing this; we can identify body configurations that
are wholly out of line with what we expect, and report unusual behaviour.

Toyama and Blake encode image likelihoods using a mixture built out of tem-
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FIGURE 1.6: Attribution: Deva’s thesis Frames from sequences tracked with the
methods of Ramanan et al., where a discriminative appearance model is built using
a specialized detector (figure ??), and then detected in each frame using a pictorial
structures model. The figure shows commercial sports footage with fast and extreme
motions. On the top, results from a 300 frame sequence of a baseball pitch from
the 2002 World Series. On the bottom, results from the complete medal-winning
performance of Michelle Kwan from the 1998 Winter Olympics. We label frame
numbers from the 7600-frame sequence. For each sequence, the system first runs
a walking pose finder on each frame, and uses the single frame with the best score
(shown in the left insets) to train the discriminative appearance models. In the
baseball sequence, the system is able to track through frames with excessive motion
blur and interlacing effects (the center inset). In the skating sequqnce, the system
is able to track through extreme poses for thousands of frames. The process is fully
automatic. Figure from Ramanan’s UC Berkeley PhD thesis, “Tracking People and
Recognizing their Activities”, 2005 c© 2005 D. Ramanan

plates, which they call exemplars [102, 101]. Assume we have a single template
— which could be a curve, or an edge map, or some such. These templates may
be subject to the action of some (perhaps local) group, for example translations,
rotations, scale or deformations. We model the likelihood of an image patch given a
template and its deformation with an exponential distribution on distance between
the image patch and the deformed template (one could regard this as a simplified
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FIGURE 1.7: Attribution: Deva’s thesis Ramanan shows that tracking people is
easier with an instance-specific model as opposed to a generic model [79]. The top

two rows show detections of a pictorial structure where parts are modeled with edge
templates. The figure shows both the MAP pose — as boxes — and a visualization
of the entire posterior obtained by overlaying translucent, lightly colored samples (so
major peaks in the posterior give strong coloring). Note that the generic edge model
is confused by the texture in the background, as evident by the bumpy posterior
map. The bottom two rows show results using a model specialized to the subject
of the sequence, using methods described above (part appearances are learned from
a stylized detection). This model does a much better job of data association; it
eliminates most of the background pixels. The table quantifies this phenomenon by
recording the percentage of frames where limbs are accurately localized — clearly
the specialized model does a much better job. Figure from Ramanan’s UC Berkeley
PhD thesis, “Tracking People and Recognizing their Activities”, 2005 c© 2005 D.
Ramanan

maximum entropy model; we are not aware of successful attempts to add complex-
ity at this point). The normalizing constant is estimated with Laplace’s method.
Multiple templates can be used to encode the important possible appearances of
the foreground object. State is now (a) the template and (b) the deformation
parameters, and the likelihood can be evaluated conditioned on state as above.

We can think of this method as a collection of template matchers linked
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over time with a dynamical model. The templates, and the dynamical model,
are learned from training sequences. Because we are modelling the foreground,
the training sequences can be chosen so that their background is simple, so that
responses from (say) edge, curve, and the like detectors all originate on the moving
person. Choosing templates now becomes a matter of clustering. Once templates
have been chosen, a dynamical model is estimated by counting.

What makes the resulting method attractive is that it relies on foreground en-
hancement — the template groups together image components that, taken together,
imply a person is present. The main difficulty with the method is that many tem-
plates may be needed to cover all views of a moving person. Furthermore, inferring
state may be quite difficult.

1.4 3D FROM 2D: LIFTING

Notes: Bunch of issues here: Original BarronKakadiaris/Taylor idea. Lifting is
probably easier than people think. The ambiguities don’t seem to exist in practice.
Good methods: regress using nearest neighbours or do snippets.

People in pictures typically are far from the camera compared to the range
of depths they span (the body is quite flat), and so a scaled orthographic camera
model is usually appropriate. One case where it fails is a person pointing towards
the camera; if the hand is quite close, compared with the length of the arm, there
may be distinct perspective effects over the hand and arm and in extreme cases the
hand can occlude much of the body.

Regard each body segment as a cylinder and assume we know its length. If
we know the camera scale, and can mark each end of the body segment, then we
know the cosine of the angle between the image plane and the axis of the segment,
which means we have the segment in 3D up to a twofold ambiguity and translation
in depth (figure 1.8 gives examples). We can reconstruct each separate segment and
obtain an ambiguity of translation in depth (which is important and often forgotten)
and a two-fold ambiguity at each segment. We can now reconstruct the body by
obtaining a reconstruction for each segment, and joining them up. Each segment
has a single missing degree of freedom (depth), but the segments must join up,
meaning that we have a discrete set of ambiguities. Depending on circumstances,
one might work with from nine to eleven body segments (the head is often omitted;
the torso can reasonably be modelled with several segments), yielding from 512
to 2048 possible reconstructions. These ambiguities persist for perspective images;
examples appear in figure 1.9.

In this very simple model of the body, 3D reconstruction from a single image is
ambiguous. However, the model oversimplifies in some important ways, and the true
extent of ambiguity in this case is quite uncertain. One important oversimplification
is that we assume that all 3D configurations are available. In practice, there are
many constraints on the available joint rotations (for example, your elbow will
move through about 700), so some of the ambiguous configurations might not be
consistent with the kinematics of the body. Unfortunately, there is clear evidence
that there are multiple kinematically acceptable reconstructions consistent with a
single image (Figure ??). It is not known whether there are multiple acceptable
reconstructions associated with most images, or with only a few images.
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L

l=L cos φ

φ

FIGURE 1.8: Attribution: 2d3Dlift/cvpr00.pdf, figure 5, p 682, CJpaper An or-
thographic view of a segment of known length L will have length sL cosφ, where φ
is the angle of inclination of the segment to the camera and s is the camera scale
linking metres to pixels (which is one in the figure above). In turn, this means
that if we know the length of the body segment and can guess the camera scale,
we can estimate cosφ and so know the angle of inclination to the frame up to a
twofold ambiguity. This method is effective; below we show two 3D reconstruc-
tions obtained by Taylor [99], for single orthographic views of human figures. The
image appears left, with joint vertices on the body identified by hand (the user also
identifies which vertex on each segment is closer to the camera). Center shows a
rendered reconstruction in the viewing camera, and right shows a rendering from
a different view direction. Figure from “Reconstruction of articulated objects from
point correspondences in a single uncalibrated image”, Taylor, Proc. Computer
Vision and Pattern Recognition, 2000 c© 2000 IEEE.

Another, more important oversimplification is that the body is not, in fact,
an assembly of cylinders. Observing the shape of a hand, for example, might give
enough information to tell whether the forearm is pointing towards the camera or
away from it. There are methods for avoiding ambiguity that exploit this observa-
tion (section 1.6.1). Finally, we often observe motion sequences rather than a single
frame, and there may be disambiguating information in the motion (section 1.4.2).

At this point, it is important to distinguish between two kinds of reconstruc-
tion. The first is an absolute reconstruction, which reconstructs the configura-
tion of the body with respect to a global world coordinate system. The second is a
relative reconstruction, where we seek the configuration of body segments with
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FIGURE 1.9: Attribution: figure 2 of sminchisescu+triggs, kinematic jump pro-
cesses, kinematicambiguity/01211339 Ambiguous reconstructions of a 3D figure, all
consistent with a single view, from Sminchisescu and Triggs [94]. The ambigui-
ties are most easily visualized by an argument about scaled orthographic cameras,
given in the text, but persist for perspective views as these authors show. Note
that the cocked wrist in the leftmost figure violates kinematic constraints — no per-
son with an undamaged wrist can take this configuration. Figure from “Kinematic
jump processes for monocular 3D human tracking”, Sminchisescu and Triggs, Proc.
Computer Vision and Pattern Recognition, 2003 c© 2003 IEEE.

respect to some root coordinate system. The root coordinate system is carried
with the body, with its origin typically in the torso. All current work assumes a
ground plane, and the root is usually oriented so that the z-direction is the up
vector and rotation about z is usually given orienting either the hip or shoulder
girdle along a coordinate direction. Absolute reconstruction is difficult, even with
motion information, because each separate frame is missing a translation in depth
and motion information is not usually enough to recover this. Absolute reconstruc-
tion with a moving camera is particularly tricky, because one would need good
camera egomotion estimates to produce such a reconstruction (we are not aware
of any in the literature at time of writing). Relative reconstruction is enough for
most purposes. For example, absolute reconstruction doesn’t seem to be necessary
to label activities. As another example, most game interfaces are interested in run-
ning, reaching and jumping motions and the like, and a relative reconstruction is
enough to identify these motions. It is important to be very careful reading the
literature, which can be very confusing about this point, because most papers do
not distinguish between absolute and relative reconstructions, and most methods
sound as though they are producing absolute reconstructions but really produce
relative ones.

1.4.1 Exploiting Appearance for Unambiguous Reconstructions

Disambiguating information might lie in the appearance of joints in the image, or
in the appearance of the whole body. However, there is little theory that can guide
us in building a model, and so it is more natural to exploit this information by
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FIGURE 1.10: Attribution: Mori+Malik, 2d3dlift/morimecv01.pdf, figures 6 and 7
Mori and Malik deal with discrete ambiguities by matching test image outlines to
examplars, which have keypoints marked [64, 65]. The keypoint markup includes
which end of the segment is closer to the view. The images on the left show exam-
ple test images, with keypoints established by the matching strategy superimposed.
The resulting reconstruction appears on the right. Figure from “Estimating Hu-
man Body Configurations using Shape Context Matching”, Mori and Malik, IEEE
Workshop on Models versus Exemplars in Computer Vision 2001 c© 2001 IEEE.

matching to labelled examples in some way. We could match either local patches
around each joint, or some representation of the whole body.

Local joint models: Mori and Malik deal with discrete ambiguities by
matching [64, 65]. They have a set of example images with joint positions marked.
The outline of the body in each example is sampled, and each sample point is en-
coded with a shape context (an encoding that represents local image structure at
high resolution and longer scale image structure at a lower resolution). Keypoints
are marked in the examples by hand, and this marking includes a representation of
which end of the body segment is closer to the camera. The outline of the body is
identified in a test image (Mori and Malik use an edge detector; a cluttered back-
ground might present issues here), and sample points on the outline are matched to
sample points in examples. A global matching procedure then identifies appropriate
examplars for each body segment and an appropriate 2D configuration. The body
is represented as a set of segments, allowing (a) kinematic deformations in 2D and
(b) different body segments in the test image to be matched to segments in different
training images. The best matching example keypoint can be extracted from the
matching procedure, and an estimate of the position of that keypoint in the test
image is obtained from a least-squares fit transformation which aligns a number of
sample points around that keypoint. The result is a markup of the test image with
labelled joint positions and with which end of the segment is closest to the camera.
A 3D reconstruction follows, as above (figure 1.10 gives some examples).

Whole body matching: Mapping an image of the body to a set of joint
angles is regression, and the simplest regression method is to match the input to its
nearest neighbor in a large training set, then output the value associated with that
nearest neighbor. Shakhnarovich et al. built a data set of 3D configurations and
rendered frames, obtained using POSER (a program that renders human figures,
from Creative Labs). They show error rates on held out data for a variety of
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regression methods applied to the pool of neighbours obtained using parameter
sensitive hashing. Generally, performance improves with more neighbours, with
using a linear (rather than constant) locally weighted regression, and if the method
is robust. The best is a robust linear locally weighted regression. Their method
produces estimates of joint angles with RMS errors of approximately 20o for a 13
degree of freedom upper body model [89]; a version of this approach can produce
full 3D shape estimates [39].

1.4.2 Exploiting Motion for Unambiguous Reconstructions

In many applications there is a video sequence of a moving person. In such cases,
it does not make sense to infer the 3D structure for each frame. It is a reliable
rule of thumb from the animation community that most body motions are quite
slow compared to reasonable video frame rates (evidence includes, for example, the
relative ease with which motion capture sequences can be compressed with minimal
loss []). This means that reconstructed body configurations for each frame will not
be independent, and so each frame should affect the reconstructions of future and
past frames. There might be quite strong constraints because the 3D reconstruc-
tions must join up in time well, and the 3D reconstruction of every frame in a
sequence must be kinematically acceptable. This means that a single kinematically
unacceptable reconstruction might be able to rule out a long ambiguous sequence.

One can incorporate dynamical information into the distance cost matching
entire 3D motion paths to 2D image tracks, a method due to Howe [45]. For each
frame of a motion sequence, we render every motion capture frame in our collection
using a discretized grid containing every possible camera and every possible root
coordinate system. Now we must construct a sequence of 3D motion reconstructions
that (a) joins up well and (b) looks like the tracked frames. This is an optimization
problem. We build a transition cost for going from each triple of (motion capture
frame, camera, root coordinate system) to every other such triple. This cost should
penalize excessively large segment and camera velocities. We compute a match cost
comparing the rendered frame with the tracked frame. Write Fi for the i’th frame
in tracked sequence, S for a reconstruction of that sequence and (Li, Ci, Ri) for
the reconstruction frame and camera corresponding to Fi. The cost function for a
reconstruction is then

cost(S) =
∑

i∈S

transition cost((Li, Ci, Ri) → (Li+1, Ci+1, Ri+1)+match cost((Li, Ci, Ri) → Fi)

and in principle we can minimize this cost with dynamic programming. In practice,
this would be very difficult to do, because there are a very large number of triples
(Li, Ci, Ri).

Some of this complexity is quite easily reduced. The number of cameras that
could apply is quite small. For example, in many practical applications, the camera
is orthographic and fixed, and the image plane is parallel to the up vector. This
means that we can choose a fixed camera, and all unknown parameters are in the
root coordinate system. Furthermore, we can estimate the image plane location
of the root with elementary methods from the track. For example, we could place
the root origin at the hips, and then estimate the location from the track. In this
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case, the unknown root parameters are translation in depth with respect to the
camera, and rotation about the up vector. Our only cue for translation in depth
with respect to the camera is a hope that changes in body configuration will reveal
any significant changes in this parameter. This hope is probably misplaced, and it
is better to leave out this parameter in the transition cost. It does not affect the
match cost, which is why it is difficult to estimate. In this case, we finally need to
discretize camera rotation, and this cannot be estimated with great precision, so
the grid can be fairly coarse. Another important case that is relatively easy occurs
when the camera is fixed, known, and looks down on the subjects. As long as we
assume that people keep their feet on the floor, the translation of the root is easily
estimated from the feet. Again, we need to search only root rotation, and again,
this can be done with a fairly coarse grid. In either case, if the motion capture data
set is very large, we may need to prune the frames further. One possibility is to cut
redundant frames out of the motion capture dataset. Another is to avoid searching
any triple where the match cost exceeds a threshold [45].

We can extend the method described to take into accelerations and higher
order dynamics into account by matching short snippets (short runs of frames
centered about a given frame) of motion capture to short snippets of video. To do
this, we need to assume that the root moves relatively slowly with respect to the
camera, so that using a single camera and root configuration for each snippet is
acceptable.

Some ambiguities seem to have a long-term character. For example, it remains
very difficult to tell whether the left leg or the right leg is leading in a lateral view
of a walking figure. This is because very little in the image changes between these
cases — there is little contrast between the trouser legs, so that it is hard to tell
whether the left thigh occludes the right, or vice versa. Ambiguities like these
might be resolvable by propagating disambiguating evidence over long time scales.
For example, if one does not have a face detector, then it can be very difficult to
tell which way a person is facing in a lateral standing view. However, if the person
walks off (and if one assumes that the camera does not move fast), they reveal the
direction in which they are facing, and this information can be propagated.

1.5 BODY RECONSTRUCTION IN 3D WITH MULTIPLE CAMERAS

Assume we have several calibrated cameras viewing a moving person. If we have an
appropriate surface model of that person’s body, we can reconstruct by finding the
3D configuration that generates images most similar to those we observe. The main
questions are the choice of model, the choice of cost function for testing similarity,
and how one searches for the best reconstruction.

Kehl et al. use a textured 3D mesh as a body model [50]. This mesh is the
skin of a skeleton, and is controlled by its joint angle representation (section ??

for these terms). The texture maps are obtained from a modelling view. The cost
function is the distance between sample points on the mesh (which are a function
of the skeleton’s kinematic parameters) and a visual hull. The hull is obtained by
intersecting cones over foreground regions from between 4 and 8 calibrated cam-
eras. The minimization procedure is a sophisticated variant of stochastic gradient
descent. An alternative to comparing the visual hull with the 3D reconstruction
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FIGURE 1.11: Attribution: Figure 5.4 from Ramanan’s thesis Left frames are
taken from a walking sequence, matched to motion capture data using the method
of Ramanan and Forsyth [80]. Matches are independent from frame to frame. Note
that the lateral view of the body (far left) is ambiguous, and can be reconstructed
inaccurately. This ambiguity does not persist, because the camera cannot move
freely from frame to frame. Right frames show reconstructions obtained using dy-
namic programming to enforce a model of camera cost. The correct reconstruction
is usually available, because the person does not stay in an ambiguous configura-
tion. The frames are taken from a time sequence, and the graphs below show an
automatically computed annotation sequence — facing left vs. facing right — as
a function of time. Note that the case on the left shows an essentially random
choice of direction when the ambiguity is present (the person appears to flip from
facing left to facing right regularly). This is because the free rotation of the cam-
era means the ambiguity appears on a per-frame basis. For the case on the right,
the smoothing created by charging for fast camera rotations means that the labels
change seldom (and are, in fact, correct). Figure from Ramanan’s UC Berkeley
PhD thesis, “Tracking People and Recognizing their Activities”, 2005 c© 2005 D.
Ramanan

is to compute the silhouette of the 3D reconstruction, then compare that with the
silhouette in each view. This can be done quickly in graphics hardware, yielding a
cost function that can be evaluated very fast, allowing real-time tracking [17].

Stereo matches can give greater depth precision than the visual hull can pro-
vide. Plänkers and Fua estimate parameters for a model of the body consisting of
a skeleton, metaball muscle model, and skin using stereo and, optionally, silhouette
information [76]; the method appears to work with a complex background. Dela-
marre and Faugeras use a form of iterated closest point matching to produce forces
that drive a 3D segment model into correspondence with the silhouette in three
calibrated views [24, 25]. Drummond and Cipolla model the body with quadric seg-
ments, and track by applying a linearized flow model (as per section ??; [12, 13])
to a search for edge points close to projected sample points on the model [32]
(see also [31] for more information on the formalism, and [30, 33] for information
about tracking changes in camera parameters). Shahrokni et al. use a similar gen-
eral approach, but employ a novel texture segmentation model to find silhouette
points [87]. They search along a scan line near and approximately normal to the
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FIGURE 1.12: Attribution: figure 12 of kehl ea, full body tracking using multiple
views, multipleview/01467432 Kehl et al. represent the body as a textured 3D mesh,
controlled by a skeleton with a texture map obtained from a modelling view. They
obtain a volumetric reconstruction from a set of calibrated cameras, then track the
body by minimizing distance between sampling points on the mesh and the volumet-
ric reconstruction. The top row shows frames from one camera with reprojected
skeleton superimposed; the bottom row shows the surface reconstruction at the
left of each frame and the original volumetric reconstruction at the right. The
reconstruction is accurate, despite some difficulties in the volumetric measurement.
Figure from “Full Body Tracking from Multiple Views Using Stochastic Sampling”,
Kehl et al. , Proc. Computer Vision and Pattern Recognition, 2005 c© 2005 IEEE.

predicted silhouette to find points where there is a high posterior of a texture edge
(see also an alternative method for finding texture silhouettes using a classifier
in [88]; and using an entropy measure in [86]).

Texture information can be registered to the body model. Starck and Hilton
obtain the best configuration of a 17 joint, meshed 3D model of the human body to
fit stereo, silhouette and feature matches for each frame; texture is then reprojected
onto the body (in [96]; see also [41, 98]). The texture is then backprojected onto the
reconstruction and composited to give a single texture map. In recent work, Starck
and Hilton show that correspondences between texture maps induced in separate
frames yield temporal correspondences and so information on how relevant surfaces
deform [97]. Models of this form allow relatively straightforward synthesis of new
views [95]. These methods are oriented to performance capture, and appear to have
been demonstrated for simple backgrounds only.

In principle, texture information registered to the body should yield a match
score and improve matches, if the texture does not move with respect to the skele-
ton. We are not aware of methods that use this cue, though it may prove useful
if one wants a detailed surface reconstruction of a model wearing tight garments.
However, one can use a flow model to register texture from frame to frame. Ya-
mamoto et al. use a linear flow model derived from the kinematic model (cf sec-
tion ??) with three cameras to obtain good tracks from hand-initialized data; they
use three calibrated cameras [108]. The paper describes no difficulties resulting
from movement of texture with respect to the body, but we expect that this effect
significantly limits the precision of available reconstructions (see also figure ??, and
the discussion in section ??). Theobalt et al. describe improved configurations
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obtained from the method of Carranza et al. ([17]) by incorporating an optic flow
model to correct the estimates of configuration [100]. Subjects are not wearing very
tight clothing, and there again seem to be no difficulties resulting from movement
of texture with respect to the body.

Generally, search methods involve either standard optimization techniques or
fairly standard variants. However, Deutscher et al. use a form of randomized search
to align a 3D model with silhouette edges [26, 28]. Sigal et al. use a form of belief
propagation to infer configuration in three or four views; the method uses detectors
to guide a form of search [90]. Carranza et al. use a surface model, controlled by
a 17 joint skeleton [17]. The search for a reconstruction at a time instant uses the
reconstruction at the previous instant as a start point; however, because motion can
be fast, and the sampling rate is relatively slow (15 Hz, p 571), a form of grid search
at each limb separately is necessary to avoid local minima. A texture estimate is
obtained by rectifying all images to the surface model, and blending.

Cheung et al. give an extensive discussion of representations of the visual
hull and methods of obtaining them; the methods they describe can incorporate
temporal information, color information, stereopsis and silhouette information [18].
Cheung et al. then use these methods to build a body model from a series of
calibration sequences, which give both surface and skeleton information [19]. This
model is then tracked by minimizing the sum of two scores. The first compares the
deformed body model with the silhouettes in each image at a given timestep. The
second compares an object reconstruction obtained at a given timestep with the
silhouettes in each modelling frame. As authors note, there are 3D situations that
are either kinematically ambiguous or at least very difficult for a tracking algorithm
of this form. The first occurs when body parts are close together (for example, an
arm pressed against the torso) and may lead to a self-intersecting reconstruction.
This difficulty appears to be intrinsic to the use of silhouette features. The second
occurs when the arm is straight, making rotation about the axis of the humerus
ambiguous. The difficulty is that the photometric detail is too weak to force the
method to the right configuration of the hand. Curiously, although Mori and Malik
have shown that one can obtain the positions of landmarks such as the location of
the hand, the knee and so on automatically, there appears to be no multiple view
reconstruction work that identifies landmarks in several views (with, for example,
the method of Mori and Malik, section ??) and builds a geometric reconstruction
this way.

1.6 WHAT ARE PEOPLE DOING?

The reason for all this work building signal representations is to determine what
people are doing.

simple discriminative methods work well

Simple discriminative methods can work well at spotting some activities.
There is a significant literature on classifying short video sequences into a small
set of activity classes (for example, “walking”, “running”, “jumping” and so on).
For many natural choices of classes, this problem is largely solved — one can get
very good results with quite straightforward methods on appropriate datasets. We
sketch such methods briefly, because they can be both useful and accurate. How-
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ever, it is very difficult to move to more complex problems, because we do not
possess any taxonomy into which a wide range of activities could be classified.
This makes it hard to build discriminative methods, because we don’t know the
classes into which we should classify. Worse, there might not be such taxonomy,
because people seem to interpret many activities in terms of the intentions of the
actors, rather than names for what they are doing. Even if there is a taxonomy, the
tendency of motions to compose (see above) suggests that it is very complicated
indeed. We can be nearly certain that we will need to name activities which we
have never seen before.

Another important difficulty is that performance figures for activity problems
can be profoundly misleading. Very often, we want to demonstrate that we can
identify uncommon phenomena, for which we posess few examples, with high accu-
racy. This is not the same as identifying common phenomena well. For example,
labelling every person in surveillance video of a shopping mall as “walking” is prob-
ably very accurate (almost certainly in the high ninety percents), because that is
what people tend to do in surveillance video. It is, however, wholly unhelpful, be-
cause surveillance problems require us to identify unusual or threatening behavior
with high accuracy.

1.6.1 Appearance Features Moving People

An alternative to tracking the body and producing a 3D representation of its move-
ment is to build image-based features that encode the body configuration well, and
then match them directly. This idea has had considerable success, because many
body motions produce quite characteristic space-time patterns. For example, if
one were to stack a series of frames of video into an XYT image, there are quite
distinctive structures, often called braids, that appear at the legs of walking pedes-
trians (Figure ??). There are now several space-time representations available, all
of which perform similarly well. We describe one construction here in detail because
it illustrates the general points fairly well, but emphasize it is one possibility drawn
from a family.

Building an Appearance Feature.

We would like to label individual frames of video, using a representation that
encodes whatever is likely to be useful. There are some rough guidelines on how to
build such a representation.

For a single frame, the shape that the body adopts is likely to be useful. We
assume that we can segment the body from the background, but expect that this
segmentation is somewhat rough. However, a detailed representation of shape is
probably not needed. Flow is likely to be useful. We will estimate optic flow at
each pixel by matching small image windows with sum-of-squared differences (see
section ??). This procedure is likely to produce a somewhat inaccurate estimate of
flow, particularly if people are relatively small in the frame (Figure ??). We will
need to do some form of flow smoothing, in a way that preserves what is important.

The difficulty with smoothing flow is that it is a field of directions. If we
were to smooth the components of flow one by one, then it might be possible to
average a large upward going flow vector with a large downward going flow vector
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FIGURE 1.13: Optic flow estimates from stabilized human figures can be very noisy,
because the figure has low resolution in the image. Straightforward smoothing does
not produce a useful feature, because one might average a large upward going flow
vector with a large downward going flow vector to get a zero flow. An alternative
procedure, due to Efros et al. [], is to rectify the flow components into positive (resp.
negative) x (resp. y) directions, then smooth these rectified values. A shows a frame
from a video sequence and B shows the flow vectors estimated by Lucas-Kanade
(section ??). C shows the x and y components of flow, with white being maximum
and black being minimum values; D shows the four rectified flow components, and
E shows the smoothed components. Note that a fairly clear approximate picture of
the overall motion appears.

and conclude that the result is no flow. This is a poor representation. A useful
and straightforward strategy, originally due to Efros et al. , is to take the x- and
y-components of flow, rectify them to get four flow maps (the magnitude of the
positive component of the flow in the x-direction, of the negative flow in the x-
direction, and of each in the y-direction), and then smooth these maps (Figure ??).
This approach is simple, and makes large movements in any direction obvious in
the flow maps.

The spatial distribution of flow in these maps is important, though, as for the
shape of the segmented body, it is unlikely that we can measure or benefit from
fine details. A histogram is a good way to produce a rough spatial map, though
averaging over the whole body involves more smoothing than is desirable. We can
place an axis-aligned box around the segmented body, rectify that box to a fixed
size square, and describe each quarter of the square. In turn, each quarter needs a
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somewhat detailed spatial representation; a fair choice is to break it into windows,
and count how many foreground pixels lie in each window. Tran et al. break each
quarter into 18 pie slices, and count the percentage of foreground pixels in each
slice. Similarly, they average the flow channels in each slice, too. This gives a
histogram for each frame.

Past and future frames are almost certainly helpful, because (for example)
to tell that someone is stopping we will need to know that they were moving; to
tell that someone is starting we will need to know that they were stationary and
will move; and so on. However, relatively little detail is going to be needed from
the frames in the deep future or the distant past. In turn, this suggests collecting
histograms for all frames in a window, but suppressing detail for some of those
frames. Tran et al. describe a frame with (a) its own histogram (b) the first 50
principal components of the descriptors of a window of size 5, centered at that
frame and (c) the first 5 principal components of the windows of size 5, centered at
the i+ 5 th and i− 5 th frames.

Matching Appearance Features.

Appearance features are very effective at simple activity classification prob-
lems and there are now several important datasets which can be used to test an
appearance feature. description of datasets

In outline, one segments the body, computes an appearance feature like that
above, then uses labelled data to build classifiers for activity labels. This is a
successful procedure, as far as it goes, but there are some points that it is important
to get right. In almost any conceivable application, we expect to see activities that
do not belong to any of the available classes. This means that we must (a) allow
our classifier to reject test examples and (b) evaluate its performance at doing so.
A particular danger is caused by the internal correlations in motion sequences. As
an extreme example, it is a very bad idea to use all the odd-numbered frames as
training data and the even-numbered frames as test data. Caution suggests that
no sequence should contain frames that are used for training and also frames that
are used for testing. It is important to test with multiple actors and with multiple
clothing styles, but the evaluation procedure should take this into account. Ideally,
all test sequences feature actors different from those in the training sequences. Most
methods score close to 100% accuracy on most recent datasets. This means that
innovations are very difficult to evaluate (how can you tell if what you did made
anything better if the basic method made only one mistake?) and means that more
data will need to be collected which aims to identify what a particular construction
can do well or badly. The ideals here can be very expensive in data, and methods
to develop large, reasonably well-labelled activity dataset remain of considerable
interest.

Aspect and Appearance Features.

The same activity can look quite different in different views, an effect known
as aspect. We take an extensive view of this phenomenon: objects can change
appearance because one sees a different outline, because occlusion relations change,
because changes in viewing direction affect apparent color and texture, or because
illumination has changed. This effect creates important difficulties for appearance
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methods, because we might need to possess several examples of the same activity
under each set of viewing conditions. Figure ?? shows how significant changes in
aspect can be; the images are taken from the IXMAS dataset, which at time of
writing was the only dataset that carefully investigates the effect of aspect on the
appearance of activities.

A core problem is to build a recognizer that can be trained from some aspects,
and will work successfully on new views: we refer to this property as transfer

across aspect. The problem remains largely open, though Farhadi et al. describe
one method that is quite successful on the IXMAS dataset []. The trick is to build
a family of classifiers for each activity; the particular classifier from the family is
chosen by an estimate of the viewing conditions. An alternative strategy might be
to build features that are largely unaffected by change in viewing direction. Junejo
et al. show that this can be done by encoding the similarity between a frame
and future and past frames; it turns out that this degree of similarity is largely
unaffected by view direction, and is quite discriminative.

1.6.2 Hidden Markov Models and Activity

Notes:

Hidden Markov models (HMM’s) pervade studies of motion, gesture and ac-
tivity, and a complete review of their applications here may now be impossible.
HMM’s are models of sequences, and at their heart is a clock. One has a set of
hidden states; at each tick of the clock, a Markov process chooses a new state, de-
pendent on the previous state and nothing else; and an emission process produces
an observation from the new state. There are clean solutions for the standard prob-
lems of learning (determining an appropriate state transition model and emission
model for a given state model) and inference (determine which hidden states oc-
curred given a set of observed states). HMM’s have been used for understanding
human behaviour but typically with quite small state models.

Very large state models are common in speech recognition, where HMM’s
have been hugely influential. We do not propose to engage in speech research, and
so do not review the area here. It is purely a source of inspiration by analogy.
Viewed from a great height, a typical speech system has a series of components:
a language model showing how words are built up into sentences; a pronuncia-
tion dictionary, giving sequences of context independent phones that correspond
to words; a context dependency model, showing how local influences produce con-
text dependent phones (cphones hereafter) from context independent phones; an
acoustic observation model showing how acoustic observations result from context
dependent phones (this is an extremely compact description of a highly sophisti-
cated area; more extensive descriptions appear in [46, 78]). The resulting object
is a vast HMM — in our example, states can be thought of as being tagged with
word-cphone-phone-sample — to explain each sample.

This HMM has some important, attractive features. Learning and authoring
can be broken into tractable subproblems — the language model might be learned
with one kind of dataset, the pronunciation dictionary with another — and as a
result, we obtain an HMM on a massive scale, but with little difficulty in authoring
it. While the state space is so big that dynamic programming must be sacrificed for
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a beam search, the state transition model is not impossible to learn, because most
state transitions don’t occur. Furthermore, the model is forced to share parameters
in important ways — a phoneme in one word has the same model as that phoneme
in a different word. The currently dominant method for authoring such models
involves finite state transducers (section ??); we propose to

Methods based on Hidden Markov Models: HMM’s have been very
widely adopted in activity recognition, but the models used have tended to be
small (for example, one sees three and five state models in [11, ?]). Yamato et al.
describe recognizing tennis strokes with HMM’s [109]. Wilson and Bobick describe
the use of HMM’s for recognizing gestures such as pushes [106]. Yang et al use
HMM’s to recognize handwriting gestures [110]. Feng and Perona [36] call actions
“movelets”, and build a vocabulary by vector quantizing a representation of image
shape, as a collection of rectangle, varying over time. These codewords are then
strung together by an HMM, representing activities.

There has been a great deal of interest in models obtained by modifying
the HMM structure. The intention is to improve the expressive power of the model
without complicating the processes of learning or inference. Brand et al use coupled
HMM’s (CHMM’s), which involve some number of simultaneous HMM’s operating
to the same clock, where the choice of a particular model’s hidden state is affected
by all other model’s states [11, ?]. Such an object is clearly itself an HMM, but
authors demonstrate a training method that reduces the number of parameters to
learn by coupling the two models. They show these models can distinguish between
a set of T’ai Chi moves.

Oliver et al [70, 69] represent behaviours using layered hidden Markov mod-
els (LHMM’s). These models involve a bank of HMM’s at the lowest level, each
generating some portion of the observation. The observations at higher levels are
the maximum likelihood hidden state sequences for the lower levels. The resulting
object is an HMM, but of complex structure; the LHMM form offers authoring ad-
vantages. This representation outperforms a straightforward HMM in recognizing
such activities as phone conversation from both vision and acoustic data.Similarly,
Mori et al build a hierarchical representation out of HMM’s to recognize everyday
gesture [66].

Wilson and Bobick [?] use a form of HMM where an unknown, global param-
eter applies to all emission models (which they call a parametric hidden Markov
model or PHMM) to model gestures with a parametric form (such as might accom-
pany “it was this big”). Data is from stereo or a Polhemus. There are recognition
results for classes of gesture such as pointing. Kettnaker and Brand [?](also, Brand
and Kettnaker, [?]) fit an HMM while penalizing model entropy; this tends to re-
duce the number of non-zero parameters, so that one can fit models with quite large
state spaces satisfactorily (such models are sometimes known as Entropic HMM’s
or EHMM’s). Galata et al. use variable length Markov models (VLMM’s: a model
that generates a state stochastically based on a variable but bounded length history)
to encode behaviour and obtain a reduction in perplexity by doing so [?, ?].

Building variant HMM’s is a way to simplify learning the state transition pro-
cess from data (if the state space is large, the number of parameters is a problem).
But there is an alternative — one could author the state transition process in such
a way that it has relatively few free parameters, despite a very large state space,
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and then learn those parameters.

Finite state methods have been used directly. Hongeng et al. demonstrate
recognition of multiperson activities from video of people at coarse scales (few kine-
matic details are available); activities include conversing and blocking [44]. Zhao
and Nevatia use a finite-state model of walking, running and standing, built from
motion capture [111]. Hong et al. use finite state machines to model gesture [43].
We are not aware of material that attempts to build large hierarchical finite state
machines, patterned after speech recognition programs, and using opportunistic
learning, as we propose to do.

1.6.3 Composite Representations of Activity

We have seen two schemes for extracting a representation of the body from video. In
the first, one produces a 3D representation of body configuration, either by tracking
in 3D or — and we prefer this — tracking in video and then lifting to 3D. In the
second, one encodes the appearance of the body over time directly. Appearance
representations are attractive, because they perform well in discriminative tests.
While appearance representations suffer from aspect effects, there is some progress
on managing the problem. There are very serious noise problems with 3D represen-
tations, because trackers still make errors. These errors can be very large, and can
disrupt the lifted track over time through the smoothing processes we described.
As a result, 3D representations can be quite noisy, and difficult to work with.

Nonetheless, we believe that 3D representations are currently better suited to
studying human activity. This is because composition seems to be a fundamental
property of activity (section ??). Both appearance and 3D representations respond
well to composition across time. One reasonable strategy to recognize a sequence
of activities is to apply a classifier to a window around each frame in the sequence,
then smooth the labels over time. A technically more sophisticated way to achieve
this is to use a conditional random field []. There is no real difficulty with using
either an appearance or a 3D representation here.

There is a very real difference between the representations when one considers
composition across the body. In this case, we may need to use the fact that we
have seen a waving arm and walking legs to recognize someone walking and waving
without having seen an example of that particular activity. This is where the
really big difference between a 3D representation and an appearance representation
comes into play. A 3D representation must segment the body into components and
appearance representations do not (if they did, one could then immediately build
a 3D representation out of the pieces). This difference is important for recognizing
activities that are composed across the body, because this segmentation tells us
where composite representations could be joined up.

There is some literature on recognizing temporal composite activities, but
there is very little on activities composed across the body. One difficulty is that
this case does not fit well in known recognition paradigms. We expect that there are
very many composite activities — which one should we report for a particular video
sequence? The most probable might be a poor report, because it is quite likely that
we will get it wrong (because there are so many possible reports). More important,
it might not be relevant to our reason for observing activity. For example, if we
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observe the behavior of other people to avoid getting assaulted, then we really just
want to be alerted to the occurrence of a subset of the collection of composite
activities.

It is a little easier to formulate the problem as search. Assume we have a set
of video clips showing various activities. We must then rank the clips in order of
relevance to a search query for a novel activity. The query is written in some query
language that allows composition across time and across the body, and the real test
of a process like this is to get good responses to search queries that (a) are complex
and (b) were not used in setting up the search (i.e. training the methods used in
searching).

Ikizler and Forsyth demonstrate a method of this form [], which we describe
briefly because it shows one way to attack quite general activity problems. The
video is represented in using tracks lifted to 3D. They build motion models for
arms and for legs executing one of a set of 13 activity labels using labelled motion
capture data. The models are simple hidden Markov models, which they compare
to phoneme models in a speech representation. They now have a stack of local
motion models. They add transitions between states in different models of the
arm (respectively leg) if the transition implies a relatively small movement (the
criteria for building motion graphs of section ?? could be applied here). Now
they build a larger model, each of whose states is a pair of arm and leg states
with consistent torso, and using the transitions of the arm and leg models. The
result is a large finite state model for body configuration; however, relatively few
parameters must be learned to create the model. The measurements are vector
quantized configurations in 3D. The emission model is learned from data.

The query language is built around units for arms and legs that are strung
together with a finite-state automaton. The units are motion annotations like walk,
run, jump, turn, reach and so on. One writes an automaton to accept any query
of interest — for example, strings that look like anything followed by arms-walk,

legs-walk followed by either arms-reach, legs-walk or arms-wave, legs-walk

followed by arms-walk, legs-walk then followed by anything. There is then a
technical trick to compute the posterior that the video contains any string accepted
by the automaton. Results are quite promising; generally, the videos at the top
of the ranking are relevant, and those at the bottom are less so. The main diffi-
culties are caused by the noisy lifting process, though replacing this process with
discriminative procedures doesn’t seem to help much.

1.6.4 Alternative Cues to Human Activity

Objects that are nearby; location of the person

1.6.5 Important Open Problems

Different representations work for different applications

Some cues are wierd - for example, location, etc.

Some problems are well understood. If people are relatively small in the video
frame, and the background is stable, it is easy to detect the people by subtracting a
background image from the current frame. If the absolute value of the difference is
large, this background subtraction declares the pixel to be a foreground pixel;
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by linking foreground blobs over time, we obtain a track. Chris Stauffer and Eric
Grimson have demonstrated that these tracks reveal a great deal about what people
are doing. For example, in views of a parking lot, the shape of the track will
show What? can’t recall. Wei Yan and David Forsyth have demonstrated that
observations like these can reveal information useful in architectural design, such
as how long people sit at a fountain and what paths they take when they walk
through an open plaza.

Video that shows rather structured behaviours, like ballet, gymnastics, or tai
chi, where there are quite specific vocabularies that refer to very precisely delineated
activities on simple backgrounds, is quite easy to deal with. Very good results are
obtained by using background subtraction to identify the major moving regions,
building features using either the HOG construction or something like it (as an
added wrinkle we must keep track of flow, rather than just orientation), and then
presenting these features to a classifier.

More general problems remain open. One source of difficulty is that we lack a
simple vocabulary of human behavior. Behavior is quite like color, because people
tend to think they know a lot of behavior names but can’t produce long lists of
such words on demand. There is quite a lot of evidence that behavior composes
— you can, for example, drink a milkshake while visiting an ATM — but we don’t
yet know what the pieces are, how the composition works, or how many composites
there might be. A second source of difficulty is that we don’t know what features
expose what is happening. For example, knowing someone is close to an ATM may
be enough to tell that they’re visiting the ATM. A third difficulty is that the usual
reasoning about the relationship between training and test data is untrustworthy.
For example, we cannot argue that a pedestrian detector is safe simply because it
performs well on a large dataset, because that dataset may well omit important, but
rare, phenomena (for example, people mounting bicycles). You can’t run someone
over because he does something unusual. The big research question is to link
observations of the body and the objects nearby to the goals and intentions of the
moving people.

1.7 NOTES

Notes: much literature on 3D from multiple cameras; on methods and ambiguities
in 3D from 2D, particularly using particle filters; we prefer the data association
issue; interest points seem good at activity if we can’t segment the body;

There has been extensive experimental work on comparing features for pedes-
trian detection, and the original Dalal and Triggs paper compares HOG descriptors
with the original method of Papageorgiou and Poggio [74]; with an extended version
of the Haar wavelets of Mohan et al. [62]; with the PCA-Sift of Ke and Sukthankar
([49]; see also [60]); and with the shape contexts of Belongie et al. [6], and also is
a mine of detailed information on tuning of features.
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